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Abstract—In Differentially Private Federated Learning (DP-
FL), gradient clipping can prevent excessive noise from being
added to the gradient and ensure that the impact of noise is
within a controllable range. However, state-of-the-art methods
adopt fixed or imprecise clipping thresholds for gradient clipping,
which is not adaptive to the changes in the gradients. This
issue can lead to a significant degradation in accuracy while
training the global model. To this end, we propose Differential
Privacy Federated Adaptive gradient Clipping based on gradient
Norm (DP-FedACN). DP-FedACN can calculate the decay rate
of the clipping threshold by considering the overall changing
trend of the gradient norm. Furthermore, DP-FedACN can
accurately adjust the clipping threshold for each training round
according to the actual changes in gradient norm, clipping
loss, and decay rate. Experimental results demonstrate that DP-
FedACN can maintain privacy protection performance similar
to that of DP-FedAvg under member inference attacks and
model inversion attacks. DP-FedACN significantly outperforms
DP-FedAGNC and DP-FedDDC in privacy protection metrics.
Additionally, the test accuracy of DP-FedACN is approximately
2.61%, 1.01%, and 1.03% higher than the other three baseline
methods, respectively. DP-FedACN can improve the global model
training accuracy while ensuring the privacy protection of the
model. All experimental results demonstrate that the proposed
DP-FedACN can help find a fine-grained privacy-accuracy trade-
off in DP-FL.

Index Terms—Federated learning, differential privacy, gradi-
ent clipping

I. INTRODUCTION

Federated Learning (FL) enables numerous edge devices to
collaboratively train a global model without sharing private
data [1]. However, as illustrated in Challenge 1 in Fig. 1, state-
of-the-art studies indicate that adversaries can still infer sensi-
tive user data characteristics by Membership Inference Attacks
(MIAs). Therefore, some existing methods add Differential
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Fig. 1. Two challenges in handling the gradient clipping for Federated

Learning.

Privacy (DP) noise to the gradients to enhance privacy pro-
tection [2, 36]. Differentially Private Federated Learning (DP-
FL) requires clipping gradients before adding noise to control
the amount of noise added to the gradients [3, 4]. As depicted
in Challenge 2 in Fig. 1, most existing methods use fixed or
imprecise clipping thresholds for gradient clipping. However,
fixed or imprecise clipping thresholds are not adaptive to the
changes in the gradients [5]. A too-small clipping threshold
discards important information in the gradients, while a too-
large clipping threshold adds excessive noise to the gradients.
Both cases ultimately lead to a significant degradation in the
accuracy and availability of the global model. Therefore, it is
crucial to find an appropriate clipping threshold to better solve
the privacy-accuracy trade-off.

State-of-the-art works have proposed using dynamic clip-
ping thresholds instead of fixed ones, providing new insights
for our study. For example, DP-FedAGNC utilizes the average
{o-norm of gradients from the previous training round as the
gradient clipping threshold for the next training round [6].
However, the average ¢5-norm of gradients cannot accurately
reflect the changes in gradients uploaded by each client, and
the calculation of the average requires an additional privacy
budget [7]. This may negatively impact the accuracy of the
global model. Besides, DP-FedAMVC employs a linear decay
function to calculate the gradient clipping threshold for the
t-th training round [8]. The decay function operates indepen-
dently of the training data and does not require an additional
privacy budget. However, we found that the number of FL
training rounds in DP-FedAMVC significantly influences the



model accuracy in practical scenarios. Moreover, DP-FedDDC
uses a near-linear decay function to calculate the gradient
clipping threshold [18]. However, DP-FedDDC shows good
performance only when the privacy budget is small. These
methods employ the idea of dynamically adjusting clipping
thresholds for each training round. However, although these
methods consider changes in gradients, the clipping thresholds
calculated in each training round are not precise enough and
cannot accurately adapt to the changes in gradients.

Motivated by the works mentioned, we aim to explore a bet-
ter privacy-accuracy trade-off by adjusting clipping thresholds
in an adaptive manner. To this end, we propose an approach,
known as Differential Privacy Federated Adaptive gradient
Clipping based on gradient Norm (DP-FedACN), which can
address the problem of fixed or imprecise clipping thresholds
that are not adaptive to changes in gradients. In each training
round, DP-FedACN calculates the decay rate of the clipping
threshold by exploiting the overall trend of gradient norm
changes. Subsequently, DP-FedACN can construct an adaptive
clipping threshold computation method by utilizing the actual
changes in gradient norm, clipping loss, and decay rate. In
brief, by taking the trade-off between privacy protection and
model accuracy into account, DP-FedACN can adaptively
adjust the clipping thresholds for each training round.

The contributions of our paper are as follows.

« Originality. We prove that the gradient norm gradually
decreases when training models using DP-SGD [9]. We
build a clipping threshold-control mechanism for global
decay, aiming to prevent sudden changes in the overall
trend of the clipping threshold.

o Methodology. To accurately adjust the clipping thresh-
olds, we construct an adaptive clipping threshold compu-
tation mechanism by considering the actual changes in
gradient norm, clipping loss, and decay rate.

o Effectiveness. The experimental results indicate that
DP-FedACN improves test accuracy by approximately
2.61%, 1.01%, and 1.03% compared to DP-FedAvg, DP-
FedAGNC, and DP-FedDDC, respectively, while ensur-
ing model privacy protection.

The remainder of this paper is organized as follows. Section
II presents the related work. The proposed framework is shown
in Section III. The design details of DP-FedACN are discussed
in Section IV. The experiments and analysis are given in
Section V. Finally, we conclude with Section VI.

II. RELATED WORK

In practical application environments, the data distribution
across different clients varies significantly (i.e., non-IID), and
FL models often experience constantly changing gradient
norms during client updates due to heterogeneous data. This
can lead to slow global model convergence and a signifi-
cant degradation in model accuracy. From the perspective of
“rectifying” data heterogeneity, Virtual Homogeneity Learning
(VHL) uses a virtual homogeneous dataset that contains no
private information and is separable for FL [31]. This virtual
dataset can be generated from pure noise shared across clients,
aiming to calibrate the features from heterogeneous clients. To

mitigate the impact of heterogeneous data on model accuracy
by generating improved local models, Tang et al. proposed
FedImpro [30], which decouples the model into high-level
and low-level components and trains the high-level part on
reconstructed feature distributions. Fedlmpro can enhance
generalization contribution and reduce gradient dissimilarity
in FL. Additionally, GossipFL constructs a communication-
efficient decentralized FL framework using a sparsification
algorithm [32]. Thus, GossipFL can counter the changing
gradient norm during client updates by accelerating global
model convergence and efficient communication. Furthermore,
to enhance the privacy protection level in FL, Li et al. pro-
posed Blockchain-Assisted Decentralized Federated Learning
(BLADE-FL) [33]. In each training round, BLADE-FL broad-
casts each client’s trained model to other clients, aggregates the
received models with the client’s own model, and competes to
generate a block before the next training round. At the same
time, BLADE-FL alleviates training defects caused by lazy
clients who steal other clients’ trained models.

In DP-FL, the trade-off between privacy protection and
model accuracy is a perpetual and hot topic [11-13]. Gradient
clipping can directly prevent excessive noise from being
added to the gradient to improve the global model training
accuracy, which makes it one of the most effective ways
to balance privacy and accuracy. Abadi et al. proposed DP-
FedAvg (a DP-protected SGD algorithm) [10], which uses a
fixed gradient clipping to clip gradients. Thus, DP-FedAvg can
protect sensitive private data and prevent excessive noise from
being added. However, using a fixed clipping threshold in DP-
FedAvg can lead to the loss of important information in the
gradient. This can lead to a degradation in the accuracy of
the global model. Moreover, DP-FedGGC divides the original
gradient into k& groups and then calculates the ¢5-norm for each
group [14]. Gradient clipping is performed for each of the &
groups using k clipping thresholds. As a result, DP-FedGGC
can achieve better performance than methods that use a fixed
clipping threshold. However, DP-FedGGC requires manual
grouping of the gradient information, so the grouping result
is still discrete and is essentially not significantly different
from the fixed clipping method. This leads to poor accuracy
of the global model. Therefore, to the best of our knowledge,
fixed clipping thresholds cannot adapt to changes in the
gradient. Dynamically adjusting the clipping threshold to set
an appropriate and accurate threshold for each training round
is still a major challenge in DP-FL.

Recently, some studies have proposed using dynamic clip-
ping thresholds instead of fixed clipping thresholds [6-8],
providing a new perspective for our research. To save the
cost of the privacy budget, Andrew et al. proposed gradient
clipping based on specific quantiles of the gradient update
norm distribution [37]. However, this method only considers
one case (i.e., gradient norms less than or equal to the
clipping threshold) and requires the addition of privacy noise
twice on the client side. This can lead to imprecise dynamic
updates of the clipping threshold and significantly increase
the local computational overhead on the client side. Guo et al.
confirmed that the main reason for the poor performance of
gradient clipping is the use of a fixed threshold during training
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Fig. 2. The overview of proposed DP-FedACN.

[15]. This led them to overlook the dynamic nature of benign
local updates during the convergence of the global model. The
team proposed a method for dynamically adjusting the clipping
threshold and demonstrated its convergence in a non-convex
environment. Wang et al. proposed DP-FedMeta, a dynamic
gradient clipping method [16]. DP-FedMeta can dynamically
adjust the clipping thresholds by considering the ratio of the
noise level to the gradient norm to balance model utility
and privacy in federated meta-learning. However, although
the above methods use the idea of dynamically adjusting the
clipping threshold, they cannot accurately reflect the effect
of gradient clipping. This leads to imprecise adjustments of
the clipping threshold and sub-optimal model accuracy. This
is because the gradient norm is different for different tasks
and training processes. Therefore, finding a precise clipping
threshold to balance privacy protection and model accuracy
still remains a significant challenge in DP-FL.

III. PROPOSED FRAMEWORK
A. System Model

As shown in Fig. 2, the system model includes a parameter
server and a set of clients X = {1,2,...,¢,...,k} that
collaboratively train a global model M with parameter 6.
Client ¢ uses its private data D; to locally iterate E times to
update its local model M;. After local training, client ¢ clips
the gradient by exploiting the clipping threshold C;. Then,
the clipped gradients are perturbed with Gaussian noise and
uploaded to the parameter server [17]. The parameter server
aggregates the global gradient and updates the global model
M. The main symbolic parameters are shown in Table I.

Specifically, in the ¢-th training round, the parameter server
first sends the clipping threshold C; and the global model
parameter 0; to each client. Next, client ¢ updates the local
model M; and clips the gradient g by using C;. After adding
noise N (0,0?) to the clipped gradient g, (i), client i uploads
the processed gradient ¢;(4) to the parameter server. After all
clients upload the gradients, the parameter server calculates the
clipping threshold decay rate p;. Then, the parameter server
calculates the average value L/ of the derivative of the clipping
loss function for k clients by exploiting the gradient norm.
Thus, the parameter server calculates the gradient clipping
threshold C;; for the (¢ + 1)-th training round using p;, Ct,

and L}. Meanwhile, the parameter server aggregates the global
gradient g; and updates the global model parameters ;. The
model iterates through these steps for 7" rounds until the global
model achieves the desired performance.

Before adding noise to the gradient, the original gradient
g needs to be clipped using the clipping threshold C. The
clipped gradient ¢’ is given by

g = Lol (1)

B. Threat Model

Our threat model has similar assumptions to previous works
[28, 29]. 1) All clients participating in FL training are honest-
but-curious. 2) The parameter server is considered honest and
trustworthy. 3) External adversaries attempt to infer whether
a given sample from an input dataset (i.e., the target dataset)
belongs to the training dataset of the client model (i.e., the tar-
get model). Therefore, we use Membership Inference Attacks
(MIAs) as the main attack method. Specifically, the adversaries
access the client model by sending a series of queries and
collecting the responses. Then, the adversaries apply analytical
techniques and algorithms to infer whether certain membership
or data features are present, aiming to determine if the query
record belongs to the client model’s training dataset. All
devices participating in FL training (e.g., parameter servers
and clients) complete the training process according to the FL
protocol. Additionally, the communication channels between
clients and the parameter server are not secure, and adversaries
may intercept or disrupt data communication.

IV. GRADIENT CLIPPING AND GLOBAL DECAY CONTROL
A. Clipping Threshold-Control Mechanism for Global Decay

In this section, we prove that the gradient norm gradually
decreases with an increase in training rounds. The overall trend
of the gradient norm should be roughly the same. To prevent
sudden changes in the decay trend of the gradient norm due
to malicious gradients, we use clipping threshold decay rate
for global control. We have Definition 1 and Theorem 1.

Definition 1. Let the model f : R — R denote a quadratic
differentiable strictly convex function, then the second-order
Taylor approximate expansion of the model f at x,_1 is
defined as

f(@) = f(wa1) + V(za)" (¢ —2a-1)
+%(x—xa_1)TH(x—xa_1) (2)

+o(l|lz = za-13),

where x,_1 is any point on the coordinate axis, H is the Hes-
sian matrix, and o(||x — x,||3) is a higher-order infinitesimal.

Theorem 1. If client i trains the local model using the DP-
SGD algorithm, then the gradient norm on a single client will
gradually decrease with the increase in training rounds.

Proof. As the model f is a strictly convex function, the
Hessian matrix H is a symmetric and positive definite matrix.
Furthermore, the DP-SGD algorithm updates the values at



TABLE I
LIST OF MAIN SYMBOLIC PARAMETERS

Symbol Symbol Meaning
K Client Set
Total number of clients
Noise standard deviation
Privacy budget
Global model parameters
Learning rate
Noise level
Relaxation factor of noise
The adaptive decay rate of t-th training round
Global gradient in ¢-th training round
Global model
Training rounds
Local iterations
Local batch size
Local privacy dataset of client ¢
Decay coefficient of ¢-th training round
Clipped threshold of ¢-th training round
Global sensitivity
Upload gradient of client %
Clipping loss of client ¢
Sibling datasets
Gaussian noise

ZQﬁpmm%i?E SN S e Qo

the point x, by exploiting the information from the previous
iteration round, which is given by

Ty = Tg—1 —1 (vf (xa—l) + N(/J/a 02)) ) (3)
where 7 is the learning rate. Without loss of generality, we
let N(u,0?) represent the noise that follows a Gaussian
distribution with a mean of x4 and a variance of o2. The
gradient at the point z, is given by

Vf(@a) =Vf(xa—1)—nH (Vf (Ta—1) + N(M»UQ))
= (I =nH)V f (za1) = 1HN(p,0?),
where [ is the identity matrix. By taking the ¢5-norm on both
sides of the equation, we derive the following inequality

IVf (@a)lly < I = nH)|2[[Vf (za=1)ll
— [nHN (1, 5%)]|2-
Let Yinin and vinq. represent the minimum and maximum

eigenvalues of H, respectively. Then, when 7 < 1/Ymax,
(I —nH)||, is equivalent to 1 — 7Yprn. Thus, we find

IV (@a)lly = IV (za-1)ll5
< N(HN (1, 02) |2 = Yninl IV f (2a—1)2)-

If the inequality |\HN (1, 02|z — Yomin |V f (2a—1)]ly < 0
holds, then Theorem 1 holds. Let ¥ = HT H. Then, according
to the transformation of the tail bound estimate formula for
multivariate Gaussian variables, for any ¢ > 0, we can get

Pr|6||HN(1,0%)|s > \/tr(\I/) + 2¢/tr(0)t 4 2|| V][t

<e’!

“4)

®)

(6)

(N
where tr(-) is the trace operation of a matrix and Pr[]
is the probability. Since |[[HN(u,02)||2 is equivalent to
S|HN(1,02%)||2, when Yomin |V (za—1)|lo > tr(¥), inequal-
ity [[HN (1,022 = Ymin |V f (za=1)|l; < 0 always holds

true. Therefore, we prove Theorem 1. O

According to Theorem 1, the gradient norm decreases
during model training. The trend of clipping threshold changes
needs to be globally controlled from the overall training
perspective. Therefore, we build a clipping threshold-control
method for global decay. This method can control the global
decay trend of the clipping threshold. In the early stages of
training, we use a larger clipping threshold to accelerate model
convergence. In the later stages, we use a smaller clipping
threshold to improve the robustness of model training. In DP,
since noise is scaled by exploiting the clipping threshold, a
smaller clipping threshold can prevent excessive noise from
damaging the original gradient. This makes gradient clipping
more effective in each training round. As power functions
align with our training strategies, we choose the basic power
function F' = x° to construct the decay gradient threshold
function. We have Definition 2 and Theorem 2.

Definition 2. According to the property of the power function
F = z% the attenuation coefficient Fy of the t-th training
round is defined as

F,=—. (8)

v

Theorem 2. If the decay gradient threshold function is con-
structed using a power function F' = x%, then the clipping
threshold decay rate py is a bounded constant and does not
affect the convergence of the global model.

Proof. By mathematical induction, we can obtain the decay
rate p; for the ¢-th training round, which is given by

1 .
pt:{l (1-1) ift>1 o)

otherwise.

Since the gradient norm on the client side keeps changing,
we cannot obtain historical information about the changes in
the gradient norm at the beginning of the training. This makes
it difficult for py to accurately fit the changes in the gradient
norm. Therefore, we set pp = 1 to simplify the algorithm and
ensure its stable operation in the early stages of training. Due
to the number of training rounds ¢t > 1 and ¢ € Z™, there exist

minimum and maximum values for the decay rate (p;),;, and
(Pt) max are given by
(pt)min = hmt—>2 Pt = \/ga (10)

(pt)max = hmf_,oo Pt = 1

As the number of training rounds increases, p; tends towards
the constant value of 1. Thus, p; is a strictly bounded decay
value. The decay rate does not affect the convergence of the
original model and we prove Theorem 2. O

B. Adaptive Clipping Threshold Computation Mechanism

During the model training process, the gradients on each
client are constantly changing. The adaptively adjusted clip-
ping threshold follows the trend of gradient changes. This
allows the clipping threshold to reflect the gradient variations
throughout the training process. For clipping threshold CY, the
clipping loss function L;(7) of client i is given by
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Now, to prove the effectiveness of the clipping loss function
L(i), we prove Theorem 3.

if [|g:(d)l, < Ct
otherwise.

11

Theorem 3. If L;(i) is used as the clipping loss function, then
we can obtain an estimate of C, using gradient descent.

Proof. Let L;(i) denote the derivative of L. (7). The expecta-
tion E;(¢) of L}(i) is given by

= 2 Prlli)ly < Gl = 3 PriC < llu(i) )

1

= Prilg:@l, <Gl -3,

where E.(i) € [—0.5,0.5]. Since L:(¢) is convex and the
gradient is bounded by 1, we can obtain an estimated value
of C; with gradient descent. Thus, we prove Theorem 3. [

Eq (i)

Since our system includes a parameter server and k clients.
Let L; denote the average of L}, which is given by

k
T = 5 (30 Num!™((lgu(i),): < o)
i=1

k

=" Num 5 (lge(i)],): >

i=1

(13)
Ct))7

where Num(¢) is a numerical value indicating whether the
condition ¢ is satisfied, and it does not carry any information
about the updated gradient. Therefore, uploading Num(¢) to
the parameter server will not leak the client’s privacy.

We aim to dynamically adjust the clipping threshold to
follow the changes in the gradient during model training. Since
L} € [-0.5,0.5], and the change in the clipping threshold
may span multiple orders of magnitude, a linear function is
not suitable for dynamically adjusting the clipping threshold.
Therefore, we opt for an exponential function, which makes

the adjustment of the clipping threshold more precise. The
adaptively adjusted clipping threshold for the (¢+1)-th training
round is given by

Chi1 = el p,Cy. (14)

In the early stages of training, the change in the gradients
uploaded by each client is usually significant. At this point, we
need to protect the gradients rather than clip the gradients as
much as possible. Only in this way can we retain more of the
parameter update information carried by the gradients, thereby
accelerating the convergence of the global model. Therefore,
to avoid impacting the aggregation effectiveness of the global
model in the first training round, we define the initial clipping
threshold Cj as the average gradient norm of the first training
round, which is given by

15)

??'M—‘

k
Z l1g¢(7)

C. Algorithm Design

The gradient perturbation and aggregation process of DP-
FedACN can be divided into two key stages.

1) Build A Clipping Threshold-Control Mechanism. In the
t-th training round, the clipping threshold decay rate p; is
calculated by (9) on the parameter server.

2) Construct An Adaptive Clipping Threshold Computation
Mechanism. In the t-th training round, each client in C uploads
its gradient g, (i) to the parameter server. The parameter server
can calculate the average value L} of Lj(i). With p;, Cy, and
Lj, the clipping threshold for the next round Cy 1 is calculated
by (14) on the parameter server.

In the ¢-th training round, the parameter server first sends
C; and 0; to each client. Client ¢ clips the gradient g;(i) by
exploiting C; and adds noise N into the clipped gradient g (7)
after updating the local model M; (lines 13-28). Then, client
¢ uploads its gradient g;(4) after adding noise. The parameter
server calculates L/ (i), the average value L}, and the decay



Algorithm 1: DP-FedACN

Input: k clients, o, 6, n, T, D, M, B, E

Output: M

1 begin

2 Initialize M, M;

3 for each communication round t € T do
4 for each client i in parallel do
5 Gt(z) <~ M;

6 9¢(1), Numtow  Num!9"

clientTrain(0:(3), D;, Ct)

7 end

8 L)« Q—%C(ZNuméow —ZNum?igh)
9 FtF%,ptF\/(lf%)

10 Ct+1 — eLiptCt

1 gt < % >0

12 9t+1 — 9t —ng

13 end

14 return M
15 end
16 function clientTrain(0, D, C)
17 begin
18 for each local epoch e € E do

19 ge < VL(6)

20 91 < 01 — NGe
21 end
2 | g+ 3.0
3 | ¢« m

[re]

2 if ||g|l2 > C then

25 ‘ Num"9" (||lg|la > C) + 1
26 else

27 ‘ Num!*® (|lg|l2 < C) + 1
28 end
29 | g+ ¢ +N(0,07)
30 return

g, Num'" (||glla < C), Num"9" (||g|l2 > C)
31 end

rate p; (lines 7-8). With p;, Cy, and L}, the clipping threshold
for the next round Cpy; is calculated (line 9). Finally, the
parameter server aggregates the global gradient g; and updates
the global model parameters 6, (lines 10-11). In the (¢+1)-
th training round, the parameter server sends Cy; and 641
to each client. The details are shown in Algorithm 1.

D. Complexity Analysis

Algorithmic Complexity. In DP-FedACN, each client it-
erates I times to ugdate the local model. The algorithmic
complexity is O}, |V]e) = O(F). Our system model
consists of k clients and the algorithmic complexity for
computing local gradients is O(k). Since all clients are training
in parallel, the algorithmic complexity becomes O(1). We have
T training rounds and the overall complexity of DP-FedACN
is O(ET). Since E < T, the overall complexity of the DP-
FedACN algorithm is O(n).

Gradient Clipping. According to Algorithm 1, the time

complexity of gradient clipping consists of three steps.

o The time complexity of gradient computation. During
each local epoch, the client needs to compute the gradient
ge. Assuming the number of model parameters is P (i.e.,
the gradient vector has a dimension of P), the complexity
of computing the gradient in each epoch is O(P). After
E epochs, the cumulative complexity of the gradient g is
O(E - P). For k clients, the time complexity of gradient
computation is O(E - P - k).

o The computation of the (y-norm of the gradient. Cal-
culating the ¢s-norm of the gradient involves summing
the squares of each component of the gradient vector
g, followed by taking the square root. Therefore, the
complexity of calculating ||g||2 is O(P), as it requires
iterating through all P gradient components to compute
the sum of squares. For k clients, The time complexity
of this step is O(P - k).

o Comparison with the threshold C and clipping. After
calculating ||g||2, a comparison with the threshold C is
made. This comparison operation itself has a constant
time complexity of O(1). If gradient clipping is required,

the normalization operation g’ <- ———— involves
max(1,%2)

scaling each component of the vector once, and its
complexity is O(P). For k clients, The time complexity
of this step is O(P - k).

Dynamic Clipping Thresholds Calculation. According to
Section IV-B, the time complexity of calculating dynamic
clipping thresholds consists of three steps.

o Statistics of Client Comparison Results. Each client needs

to calculate the {o-norm of its gradient ||g;(7)||,, with a
time complexity of O(P), where P is the dimension of
the gradient vector (i.e., the number of model parame-
ters). Then, the current threshold C; is compared, with
an O(1) complexity. Therefore, for each client, the time
complexity for counting the number of conditions met
(i.e., Numéow and Num?igh) is O(P). For k clients,
the total time complexity of this step is O(P - k).

o Calculation of the Update Ratio LT Calculating the
update ratio Li,’5 involves summing the statistical results
of all clients and then dividing by 2k. As it requires
iterating through the statistical values of all clients, the
time complexity of this step is O(k).

o Updating the Clipping Threshold Cy,1. The operation of
updating the threshold C;;; mainly involves using ex-
ponential functions and multiplication operations, which
are constant-time operations with a complexity of O(1).

Combining all steps, we can conclude that the total time
complexity of dynamically calculating the gradient clipping
threshold C in each training round is O(P-k). This complexity
mainly arises from the calculation and comparison operations
of the ¢5-norm of the gradients for all clients.

V. PERFORMANCE EVALUATION
A. Experimental Settings

Experimental Environment. The experimental environ-
ment consists of one parameter server and 100 clients. The



TABLE II
DATASETS DETAILS AND HYPERPARAMETER SETTINGS
Datasets MNIST CIFAR-10 CIFAR-100  Shakespeare
Type Image Image Image Text
Model CNN CNN CNN RNN
Clients 100 100 100 715
Train Size 60,000 50,000 50,000 16,068
Test Size 10,000 10,000 10,000 2,356
Batch Size 128 128 128 4
Training Round 200 500 500 1,000
Learning Rate 0.1 0.05 0.05 1

deep learning framework is PyTorch, and the Python version
is 3.6. The compute nodes run on a 64-bit Ubuntu 20.04 LTS
operating system. The CPU is an Intel(R) Xeon(R) Gold 6326
@2.90GHz, with 256GB of RAM, and a 4TB hard drive. The
GPU is an NVIDIA A100 with 80GB of memory.

Non-IID Datasets and Target Models. The experiments
are conducted on three image datasets (MNIST, CIFAR-10,
and CIFAR-100) and one text dataset (Shakespeare dataset).
Two target models (CNN and RNN) are trained on these
datasets. Since research conducted under non-independent and
identically distributed (non-IID) settings is common and more
closely reflects real-world scenarios, we use the Dirichlet
function Dir(¢ = 1) to partition the datasets [25, 27, 34],
generating non-IID FL training datasets for different clients.
Note that when using the Dirichlet function Dir(y) to gener-
ate non-IID datasets, the higher the value of the parameter ¢,
the more similar the distribution of training datasets allocated
to different clients. Therefore, to more accurately simulate the
real-world environment for models, we choose ¢ = 1 to create
the non-IID settings required for our experiments.

e MNIST [23]. We train a Convolutional Neural Network
(CNN) for image classification tasks, which consists of 2
convolutional layers (5 x 5, each activated by ReLU and
followed by 2 x 2 max pooling), 2 fully connected layers
and Softmax normalizes the final output.

o CIFAR-10 and CIFAR-100 [24]. We also train a CNN for
image classification tasks, consisting of 3 fully connected
layers, and the other settings are the same as MNIST.

o Shakespeare dataset is constructed from The Complete
Works of William Shakespeare [26]. We follow the same
settings in [25] to process the raw data, each client is
assigned one or more lines for training or testing. We
utilize a Recurrent Neural Network (RNN) to predict the
next character. The RNN accepts an input sequence of 80
characters and includes an embedding layer (80 x 8), two
LSTM layers (80 x 256), and a dense layer (80 x 90).

Baselines. Note that both DP-FedAGNC and DP-FedDDC
can achieve dynamic gradient clipping.

o FedAvg randomly selects a subset of clients to participate
in each round of FL training and averages the gradients
uploaded by the clients [26]. FedAvg is already the most
commonly used and classic FL baseline method without
privacy consideration.

o DP-FedAvg is a common baseline method that introduces
DP noise into FedAvg to enhance privacy protection [10].

o DP-FedAGNC utilizes the average ¢s-norm of gradients

from the previous batch as the clipping threshold for the
next batch [6].

o DP-FedDDC employs a near-linear decay function to set
the clipping threshold and adaptively adjusts the noise
scaler [18]. DP-FedDDC is the state-of-the-art gradient
clipping method under higher privacy budgets.

Hyperparameter Settings. To ensure a fair comparison be-
tween DP-FedACN and baselines, we follow the same settings
in DP-FedDDC and set the relaxation parameter § = ﬁ =
0.001 [18], where |D| is the training data sample size for each
client. We set the privacy budgets e = {0.1,0.2,0.5,1,2,4}
to demonstrate the robustness of DP-FedACN. Each round of
FL training randomly selects 10 clients to participate in the
training. The other parameters follow common settings used in
image classification tasks and next-character prediction tasks,
with details provided in Table II.

Member Inference Attacks (MIAs) and Model Inversion
(MI) Attack in Security Model. Basic-MIA, ML-Leaks, and
White-box member inference attack methods are employed
to perform inference attacks during FL training [20-22]. We
use equal-sized sets to ensure an equal number of members
and non-members, in order to maximize the uncertainty of
the inference. Additionally, to evaluate the privacy protection
performance of DP-FedACN against other potential attacks or
more complex privacy leakage scenarios, Knowledge-Enriched
Distributional Model Inversion attack (KED-MI) [35], which
provides state-of-the-art performance for white-box MI at-
tacks, is employed to perform model inversion attacks.

o ML-Leaks (Adversary 1): The adversary initially splits
the shadow dataset Dgpgd0 into two subsets, namely
D, and Digst, . Subsequently, a shadow model
Mhadow is trained using the data from D" " From
the output of Mpqd0w, the adversary identifies the three
highest posterior values and assigns them labels of either
1 or 0. Finally, the adversary generates predictions related
to membership status.

o White-box Inference: Adversaries train their adversarial
models using diverse components from both training and
testing datasets. By targeting multiple observed inputs
of the target model, the adversary captures correlations
between parameters across different iteration rounds.

o KED-MI Attack: In white-box MI attacks, with access to
a target model M? — RICl and any given target class
c* € C, the objective of the adversary is to reconstruct
a feature point z* from the training data associated with
class c¢*. d is the dimension of the model input, C' is the
set of all class labels, and |C| is the size of C. Following
the experimental setup in [35], we evaluate KED-MI’s
attack performance using the same attack accuracy metric
(called attack success rate in this paper). A high attack
success rate indicates that the reconstructed images may
reveal private information about the target label.

Metrics. We use the four evaluation criteria.

e Privacy Protection. We utilize three MIAs and one MI
attack to evaluate the privacy protection performance
of the four methods. The lower the attack success rate



TABLE III
ATTACK SUCCESS RATE OF DIFFERENT ATTACK METHODS WITH DIFFERENT TRAINING METHODS (ASR %)

Privacy Methods MNIST

CIFAR-10 CIFAR-100

Budgets (DP-)  Basic-MIA ML-Leaks White-box KED-MI Basic-MIA ML-Leaks White-box KED-MI Basic-MIA ML-Leaks White-box KED-MI
FedAvg 50.13% 50.56%  51.35% 51.48% 58.43% 62.01% 67.84% 59.20% 62.83% 69.01%  74.44% 63.32%

1 FedAGNC  50.39% 50.81%  51.62% 5191%  59.05% 63.03%  6830% 60.53% 63.16% 7545 % 78.29%  63.55%
FedDDC 50.42% 50.63%  52.04% 52.27%  59.08% 62.47%  6838% 60.61%  63.24% 69.88%  78.86% 63.61%
FedACN 50.47%  50.61% 51.38% 51.53% 59.19%  62.42% 68.26% 59.86% 63.31% 69.36% 75.77% 63.38%
FedAvg 50.22% 50.69%  51.64% 51.55% 59.41% 63.11% 7095% 60.15% 64.51% 75.09%  77.99%  65.00%

2 FedAGNC  50.44% 50.96%  51.81% 52.14%  60.03% 64.06%  71.12% 61.09%  64.86% 76.82%  80.20%  65.69%
FedDDC 50.48% 50.78%  51.98% 52.10%  60.06% 63.68%  71.20% 61.14%  64.90% 7530%  80.39%  65.66%
FedACN  50.52% 50.77% 51.77% 52.01% 60.16% 63.47% 71.07% 6091% 65.02% 7524% 78.11% 65.35%
FedAvg 50.29% 50.89%  52.06% 52.62%  60.45% 63.54%  76.02% 61.30% 68.25% 78.59%  80.95% 66.12%

4 FedAGNC 50.51% 51.04%  52.11% 53.22% 61.17% 65.12%  75.88% 61.74%  68.87% 84.61%  8532% 67.34%
FedDDC 50.56% 50.98%  52.24% 53.28% 61.22% 64.21%  76.44% 61.66%  68.94% 79.07%  86.08% 67.40%
FedACN  50.60% 50.96% 52.07% 53.15% 61.31% 63.68% 76.34% 61.39% 69.11% 7895% 82.46% 66.91%

TABLE IV standard deviation of accuracy. The accuracy standard

AVERAGE ATTACK SUCCESS RATE OF THREE MIAS WITH DIFFERENT
TRAINING METHODS (AASR %)

Privacy Methods
Budgets (DP-) MNIST CIFAR-10 CIFAR-100
FedAvg 50.68% 62.76% 68.76%
| FedAGNC 50.94% 63.46% 72.30%
FedDDC 51.03% 63.31% 70.66%
FedACN 50.82% 63.29 % 69.48 %
FedAvg 50.85% 64.49% 72.53%
9 FedAGNC 51.07% 65.07% 73.96%
FedDDC 51.08% 64.98% 73.53%
FedACN 51.02% 64.90% 72.79%
FedAvg 51.08% 66.67% 75.93%
4 FedAGNC 51.22% 67.39% 79.60%
FedDDC 51.26% 67.29% 78.03%
FedACN 51.21% 67.11% 76.84 %
TABLE V

GLOBAL AVERAGE TEST ACCURACY WITH DIFFERENT PRIVACY
BUDGETS FOR DIFFERENT TRAINING METHODS (ATA %)

Privacy

Budgets Methods MNIST CIFAR-10 CIFAR-100 Shakespeare
- FedAvg 98.84% 73.25% 38.62% 62.74%
DP-FedAvg  95.12% 52.73% 22.74% 34.15%
1 DP-FedAGNC 95.72% 54.46% 24.52% 36.80%
DP-FedDDC  95.61% 54.17% 24.09% 36.38%
DP-FedACN 95.94% 55.74%  25.81% 36.95%
DP-FedAvg  96.27% 55.87% 24.97% 39.61%
’ DP-FedAGNC 96.62%  57.69% 26.77% 41.53%
DP-FedDDC  96.58% 57.61% 26.62% 41.66%
DP-FedACN 97.02% 59.30%  28.15% 42.49%
DP-FedAvg  96.89% 58.10% 26.53% 44.97%
4 DP-FedAGNC 97.21% 60.27% 28.45% 47.17%
DP-FedDDC 97.37% 60.72% 28.76% 47.43%
DP-FedACN 97.87% 61.80%  29.74% 48.52 %

(ASR%) and average attack success rate (AASR%), the
higher the privacy protection performance.

e Global Model Availability. We employ the global average
testing accuracy (ATA%) of model training to evaluate
the global model availability of DP-FedACN. Note that a
higher global average test accuracy (ATA%) in the exper-
imental results indicates better global model availability.

e Clipping Threshold Universality. Similarly to existing
methods, we measure the threshold universality using the

deviation SD = /137 (A; — A)? is the standard de-

viation between the accuracy A; of the global model on
each local client’s test dataset and the average accuracy
A across all clients. A smaller SD indicates that in each
iteration, the clipping threshold is closer to the optimal
value, suggesting more reasonable threshold adjustments
and greater universality.

e Applicability of DP-FedACN. We compare the global
average testing accuracy (ATA%) of model training at
lower privacy budgets ¢ = {0.1,0.2,0.5} to evaluate
the applicability of DP-FedACN. Note that a higher
average test accuracy (ATA%) in the experimental results
indicates better applicability.

B. Privacy Protection

One of the most direct methods to evaluate privacy protec-
tion performance is incorporating inference attacks during the
model training. In this section, we conduct comparative ex-
periments using three MIAs (i.e., Basic-MIA, ML-Leaks, and
White-box attacks) and one MI attack (KED-MI). We evaluate
the privacy protection performance of the four DP methods by
analyzing the attack success rate (ASR%) under different at-
tacks. We train a global model on MNIST and CIFAR-10/100
datasets using DP-FedAvg, DP-FedAGNC, DP-FedDDC, and
DP-FedACN with the privacy budgets ¢ = {1,2,4}. The
experimental results are shown in Table III.

1) Training with Different ¢ and MIAs. DP-FedAvg consis-
tently exhibits the lowest ASR and has superior privacy protec-
tion performance. This is because DP-FedAvg only prevents
the addition of substantial noise and clip gradients using a
fixed threshold. Since DP-FedACN can clip the gradient more
accurately in each training round and introduce fewer noise
perturbations, DP-FedACN has the highest ASR when facing
Basic-MIA. However, when attacked by stronger MIAs (i.e.,
ML-Leaks and White-box attacks), the ASR of DP-FedACN
is much lower than that of DP-FedAGNC and DP-FedDDC.
From the experimental results reported in Table III, the privacy
protection performance of DP-FedACN is similar to that of
DP-FedAvg and outperforms DP-FedAGNC and DP-FedDDC.
This is because DP-FedACN adjusts the clipping threshold
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GLOBAL AVERAGE TEST ACCURACY ON FOUR DATASETS (ATA %)
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by considering the gradient norm changes and uses a decay
function to control the trend of clipping threshold changes.

2) Training with Different € and MI attacks. When training
with the MNIST dataset, the ASR of MI attacks for the
four methods is higher than MIAs. However, when training
with the CIFAR-10/100 datasets, the ASR of MI attacks for
the four methods is lower than MIAs. This is because the
complexity and diversity of the CIFAR-10/100 datasets make
it very challenging to reverse-engineer a high-quality image
that can be correctly classified. Under different privacy budgets
e ={1,2,4}, the ASR of DP-FedACN is slightly higher than
DP-FedAvg, but significantly lower than DP-FedAGNC and
DP-FedDDC. Therefore, when facing MI attacks, the privacy
protection performance of DP-FedACN is comparable to DP-
FedAvg and outperforms DP-FedAGNC and DP-FedDDC.

3) Training with Different ¢ and Datasets. As shown in
Table 1V, we calculate the AASR of the three MIAs. When
training with the MNIST dataset, the AASR of the four meth-
ods does not differ significantly. However, when training with
the high-complexity CIFAR-10/100 datasets, the AASR of the
four methods sharply increases. The AASR of DP-FedACN
is lower than that of DP-FedAGNC and DP-FedDDC. Par-
ticularly when training with high-complexity datasets and

high privacy budgets, DP-FedACN exhibits superior privacy
protection compared to DP-FedAGNC and DP-FedDDC but
is slightly inferior to DP-FedAvg by less than 1%.

4) Summary. DP-FedACN shows better defense against
MIAs and MI attacks under high privacy budgets. The privacy
protection performance of DP-FedACN is comparable to DP-
FedAvg and outperforms DP-FedAGNC and DP-FedDDC. In
summary, the more complex the data used for model training
and the stronger the MIAs, the better the privacy protection
performance of DP-FedACN.

C. Global Model Availability

In this section, we use global average testing accuracy
(ATA%) to evaluate the global model availability of DP-
FedACN. Table V and Fig. 4 illustrate the changes in ATA for
DP-FedAvg, DP-FedAGNC, DP-FedDDC, and DP-FedACN
with the privacy budgets ¢ = {1,2,4}.

1) Training with Different €. For the MNIST dataset, when
the privacy budget ¢ = 1, the ATA of DP-FedACN is higher
than that of DP-FedAvg by approximately 0.82%. When
€ = 4, the ATA of DP-FedACN is higher than that of DP-
FedAvg by approximately 0.98%. Similarly, for the CIFAR-
10/100 datasets, when ¢ = 4, the ATA of DP-FedACN is
higher than that of DP-FedAvg by approximately 3.7% and
3.21%, respectively. These improvements are higher than the
ones at ¢ = 1, which are 3.01% and 3.07%, respectively.
Therefore, DP-FedACN can better improve the global model’s
availability under high privacy budgets. For the Shakespeare
dataset, DP-FedACN achieves a 3.55% higher ATA than DP-
FedAvg with € = 4, and a 2.80% higher ATA than DP-FedAvg
with € = 1, which is consistent with the experimental findings
on the MNIST and CIFAR-10/100 datasets. This demonstrates
that DP-FedACN provides a greater improvement in model
accuracy with higher privacy budgets compared to lower
privacy budgets when training on text datasets. In addition,
DP-FedACN always achieves significantly higher ATA when
e = {1,2,4} compared to DP-FedAvg, DP-FedAGNC, and
DP-FedDDC. This indicates that FedACN can also achieve
better model accuracy on text datasets.

2) Training with Different Datasets. When training with
the relatively simple MNIST dataset, the differences in ATA
among the four methods are not significant. However, when
training with the complex CIFAR-10/100 and Shakespeare
datasets, DP-FedACN exhibits significantly higher ATA com-
pared to DP-FedAvg, DP-FedAGNC, and DP-FedDDC. This
is because when training with complex datasets, the clipping
threshold in each training round needs to be more precise to
prevent adding excessive noise. DP-FedACN can capture the
overall trend of gradient norm changes and incorporate these
changes into the control mechanism for dynamically adjusting
the clipping threshold in each training round. Therefore, the
clipping threshold dynamically adjusted by DP-FedACN will
be more precise and adaptive to the changes in gradient norms.

3) Summary. Table VI shows the ATA of the four methods
on four different datasets. For the MNIST, CIFAR-10/100
and Shakespeare datasets, DP-FedACN achieves higher ATA
compared to the DP-FedAvg, DP-FedAGNC, and DP-FedDDC
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methods by approximately 2.61%, 1.01%, and 1.03%, re-
spectively. The global model availability of DP-FedACN is
superior. Especially under high privacy budgets, the ATA of
DP-FedACN significantly outperforms the other three meth-
ods. Despite the fact that DP-FedACN achieves only 1.45%
and 1.03% higher model accuracy on image and text datasets
respectively compared to the state-of-the-art dynamic clipping
method DP-FedDDC, experimental results in Section V-B
show that the ASR of DP-FedACN is close to DP-FedAvg
and significantly is lower than DP-FedDDC (the largest gap is
1.19%, € = 4, CIFAR-100). These improvements indicate that
DP-FedACN can provide better privacy protection and model
accuracy compared to DP-FedDDC, thereby exploring a better
trade-off between model privacy and accuracy.

D. Clipping Threshold Universality

We utilize the standard deviation (SD) of local testing
accuracy to evaluate the universality of the clipping thresholds
calculated using DP-FedACN. Fig. 5 illustrates the standard
deviation for DP-FedAvg, DP-FedAGNC, DP-FedDDC, and
DP-FedACN with the privacy budgets ¢ = {1, 2,4}.

As shown in Fig. 5, when training on the MNIST dataset,
the differences in local testing accuracy standard deviation
among the four methods are not significant, as the MNIST
dataset has relatively low complexity. However, when training
on the more complex CIFAR-10/100 datasets, DP-FedACN
exhibits lower local testing accuracy standard deviation un-
der all three privacy budgets compared to DP-FedAvg, DP-
FedAGNC, and DP-FedDDC. This is because DP-FedAvg
adopts a fixed threshold for clipping, leading to the poorest
gradient clipping effect. On one hand, DP-FedACN consid-
ers the relationship between the clipping threshold and the
gradient norm. When adjusting the clipping threshold in each
training round, DP-FedACN incorporates information about
the changes in gradient norms into the adjustment method.
On the other hand, throughout the entire training process,
DP-FedACN macroscopically controls the future trend of the
clipping threshold. This avoids potential misdirection of the
threshold due to gradient norm fluctuations in a specific
training round. These improvements allow DP-FedACN to
achieve higher precision and effectiveness in gradient clipping.
In summary, the universality of the clipping thresholds in DP-
FedACN is better than that of the other three methods.

E. Applicability Analysis under Lower Privacy Budgets

Section V-B shows that the privacy protection performance
of DP-FedACN is comparable to that of DP-FedAvg and
outperforms DP-FedAGNC and DP-FedDDC. Section V-C
shows that the global model availability of DP-FedACN is the
best especially when training with high privacy budgets. In this
section, we choose DP-FedAvg as the comparative method to
evaluate the performance of DP-FedACN under low privacy
budgets € = {0.1,0.2,0.5} by comparing the average testing
accuracy (ATA%) of DP-FedACN and DP-FedAvg.

As shown in Fig. 6, DP-FedACN consistently achieves
higher ATA than DP-FedAvg. It is noteworthy that as the
privacy budget increases, the increment in ATA for DP-
FedACN gradually surpasses that of DP-FedAvg. This is
because DP-FedACN adds noise after clipping gradients. Al-
though the amount of noise added can be dynamically adjusted
by considering the clipping threshold changes, the impact of
the privacy budget on the perturbation of gradients remains
significant. This leads to a decrease in accuracy for DP-
FedACN under low privacy budgets. As the privacy budget
becomes larger, the influence of the noise added on accuracy
diminishes, and DP-FedACN can dynamically adjust the clip-
ping threshold and choose an appropriate noise distribution
for the current iteration round, making the model training
more accurate. Therefore, when training with low privacy
budgets, DP-FedACN can still maintain a higher ATA than
DP-FedAvg. As the privacy budget gradually increases, the



superiority of DP-FedAvg becomes more evident, and DP-
FedACN can achieve significantly higher ATA. Thus, DP-
FedAvg demonstrates good universality.

VI. CONCLUSION

Fixed or imprecise thresholds are not adaptive to the
changes in gradients. This shortcoming can lead to excessive
noise addition and significantly degradate model accuracy. To
address this issue, we propose Differential Privacy Federated
Adaptive gradient Clipping based on gradient Norm (DP-
FedACN). In each training round, DP-FedACN calculates the
decay rate of the clipping threshold by capturing the overall
trend of gradient norm changes. Thus, DP-FedACN can cal-
culate an adaptive clipping threshold by considering multiple
factors such as the changes in gradient norms, clipping loss,
and decay rate. Experimental results demonstrate that DP-
FedACN achieves higher average testing accuracy compared to
the three baseline methods by approximately 2.61%, 1.01%,
and 1.03%, respectively. DP-FedACN can accurately adjust
the gradient clipping threshold in each training round. There-
fore, DP-FedACN allows precise control over the amount of
added noise and effectively improves the accuracy of global
model training. In summary, DP-FedACN can help find a fine-
grained privacy-accuracy trade-off for DP-FL.
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